Kopertina e librit Matematika 10 - 11: Pjesa II

Zgjidhja e ushtrimit 6

Zgjidhja e ushtrimit 6 të mësimit 5.2A në librin Matematika 10 - 11: Pjesa II nga shtëpia botuese Botime Pegi me autorë Steve Fearnley, June Haighton, Steve Lomax, Peter Mullarkey, James Nicholson dhe Matt Nixon.


Pyetja

Thjeshtoni shprehjet:

  1. 43π×63+23π×32\dfrac{4}{3}\pi \times 6^3 + \dfrac{2}{3}\pi \times 3^2
  2. 13π×92×513π(185)2×2\dfrac{1}{3}\pi \times 9^2 \times 5 - \dfrac{1}{3}\pi(\dfrac{18}{5})^2 \times 2
  3. 12(4π×112+4π×92)\dfrac{1}{2}(4\pi \times 11^2 + 4\pi \times 9^2)
  4. 16π+4π62+4216\pi + 4\pi\sqrt{6^2 + 4^2}
  5. 8π5+3π4\dfrac{8\pi}{5} + \dfrac{3\pi}{4}
  6. 214π+112×423π2\dfrac{1}{4}\pi + 1\dfrac{1}{2} \times 4\dfrac{2}{3}\pi
  7. 56π22+79π+28\dfrac{5}{6}\pi - 2\sqrt{2} + \dfrac{7}{9}\pi + \sqrt{28}
  8. 15π×4×3π63\dfrac{\sqrt{15\pi} \times 4 \times \sqrt{3\pi}}{6\sqrt{3}}

Zgjidhja

  1. 43π×216+23π×9=72×4π+2π×3=288π+6π=294π\dfrac{4}{\cancel{3}}\pi \times \cancel{216} + \dfrac{2}{\cancel{3}}\pi \times \cancel{9} = 72 \times 4\pi + 2\pi \times 3 = 288\pi + 6\pi = 294\pi
  2. 13π×81×513π×32425×2=27π×510825π×2=135π21625π=337521625π=315925π\dfrac{1}{\cancel{3}}\pi \times \cancel{81} \times 5 - \dfrac{1}{\cancel{3}}\pi \times \dfrac{\cancel{324}}{25} \times 2 = 27\pi \times 5 - \dfrac{108}{25}\pi \times 2 = 135\pi - \dfrac{216}{25}\pi = \dfrac{3375 - 216}{25}\pi = \dfrac{3159}{25}\pi  == 126925π126\dfrac{9}{25}\pi
  3. 12(484π+324π)=12×808π=404π\dfrac{1}{2}(484\pi + 324\pi) = \dfrac{1}{\cancel2} \times \cancel{808}\pi = 404\pi
  4. 16π+4π5216π+4π×2138π(2+13)16\pi + 4\pi \sqrt{52} \rArr 16\pi+4\pi \times 2\sqrt{13} \rArr 8\pi(2+\sqrt{13})
  5. 32π+15π20=47π20\dfrac{32\pi + 15\pi}{20} = \dfrac{47\pi}{20} == 2720π2\dfrac{7}{20}\pi
  6. 94π+32×143π=94π+7π=374π\dfrac{9}{4}\pi + \dfrac{\cancel{3}}{\cancel{2}} \times \dfrac{\cancel{14}}{\cancel{3}}\pi = \dfrac{9}{4}\pi + 7\pi = \dfrac{37}{4}\pi == 914π9\dfrac{1}{4}\pi
  7. 56π+79π22+27=15+1418π22+27=2918π2(27)\dfrac{5}{6}\pi + \dfrac{7}{9}\pi - 2\sqrt{2} + 2\sqrt{7} = \dfrac{15 + 14}{18}\pi - 2\sqrt{2} + 2\sqrt{7} = \dfrac{29}{18}\pi - 2 (\sqrt{2} - \sqrt{7}) == 11118π2(27)1\dfrac{11}{18}\pi - 2(\sqrt2 - \sqrt7)
  8. 15π×3π×463=45π2×463=12π563=2π53\dfrac{\sqrt{15\pi \times 3\pi} \times 4}{6\sqrt{3}} = \dfrac{\sqrt{45\pi^2} \times 4}{6\sqrt{3}} = \dfrac{\cancel{12}\pi\sqrt{5}}{\cancel{6}\sqrt{3}} = \dfrac{2\pi\sqrt{5}}{\sqrt{3}} == 2π53×33\dfrac{2\pi \sqrt{5}}{\sqrt{3}} \times \dfrac{\sqrt3}{\sqrt3} == 2π153\dfrac{2\pi \sqrt{15}}{3}