Kopertina e librit Matematika 10 - 11: Pjesa II

Zgjidhja e ushtrimit 13

Zgjidhja e ushtrimit 13 të mësimit Vlerësim 7 në librin Matematika 10 - 11: Pjesa II nga shtëpia botuese Botime Pegi me autorë Steve Fearnley, June Haighton, Steve Lomax, Peter Mullarkey, James Nicholson dhe Matt Nixon.


Pyetja

Jepen vektorët x=(41)\vec{x}=\dbinom{4}{1}, y=(72)\vec{y}=\dbinom{7}{-2} dhe z=(85)\vec{z}=\dbinom{-8}{5}. Shkruani vektorët e mëposhtëm.

  1. 3x3\vec{x}
  2. 5y5\vec{y}
  3. 2z-2\vec{z}
  4. y+z\vec{y}+\vec{z}
  5. yx\vec{y}-\vec{x}
  6. x+y+z\vec{x}+\vec{y}+\vec{z}
  7. 4z2x4\vec{z}-2\vec{x}
  8. 4y+3x2z4\vec{y}+3\vec{x}-2\vec{z}
  9. 3z(x+y)3\vec{z}-(\vec{x}+\vec{y})

Zgjidhja

  1. 3x=3(41)3\vec{x}=3\dbinom{4}{1} =(3×43×1)==\dbinom{3\times4}{3\times1}= (123)\dbinom{12}{3}
  2. 5y=5\vec{y}= 5(72)=5\dbinom{7}{-2}= (5×75×(2))=\dbinom{5\times7}{5\times(-2)}= (3510)\dbinom{35}{-10}
  3. 2z=2(85)=-2\vec{z}=-2\dbinom{-8}{5}= ((2)×(8)(2)×5)=\dbinom{(-2)\times(-8)}{(-2)\times5}= (1610)\dbinom{16}{-10}
  4. y+z=\vec{y}+\vec{z}= (72)+(85)=\dbinom{7}{-2}+\dbinom{-8}{5}= (7+(8)(2)+5)=\dbinom{7+(-8)}{(-2)+5}= (13)\dbinom{-1}{3}
  5. yx=\vec{y}-\vec{x}= (72)(41)=\dbinom{7}{-2}-\dbinom{4}{1}= (74(2)1)=\dbinom{7-4}{(-2)-1}= (33)\dbinom{3}{-3}
  6. x+y+z=\vec{x}+\vec{y}+\vec{z}= (41)+(72)+(85)=\dbinom{4}{1}+\dbinom{7}{-2}+\dbinom{-8}{5}= (4+7+(8)1+(2)+5)=\dbinom{4+7+(-8)}{1+(-2)+5}= (34)\dbinom{3}{4}
  7. 4z2x=4\vec{z}-2\vec{x}= 4(85)2(41)=4\dbinom{-8}{5}-2\dbinom{4}{1}= (4×(8)2×44×52×1)=\dbinom{4\times(-8)-2\times4}{4\times5-2\times1}= (328202)=\dbinom{-32-8}{20-2}= (4018)\dbinom{-40}{18}
  8. 4y+3x2z=4\vec{y}+3\vec{x}-2\vec{z}= 4(72)+3(41)2(85)=4\dbinom{7}{-2}+3\dbinom{4}{1}-2\dbinom{-8}{5}= (4×7+3×42×(8)4×(2)+3×12×5)=\dbinom{4\times7+3\times4-2\times(-8)}{4\times(-2)+3\times1-2\times5}= (28+12+168+310)=\dbinom{28+12+16}{-8+3-10}= (5615)\dbinom{56}{-15}
  9. 3z(x+y)=3\vec{z}-(\vec{x}+\vec{y})= 3(85)((41)+(72))=3\dbinom{-8}{5}-(\dbinom{4}{1}+\dbinom{7}{-2})= (3×(8)3×5)((4+71+(2)))=\dbinom{3\times(-8)}{3\times5}-(\dbinom{4+7}{1+(-2)})= (2415)(111)=\dbinom{-24}{15}-\dbinom{11}{-1}= (241115(1))=\dbinom{-24-11}{15-(-1)}= (3516)\dbinom{-35}{16}