Zgjidhja e ushtrimit 6 të mësimit 3.3B në librin Matematika 12 (me zgjedhje) nga shtëpia botuese Botime Pegi me autorë Brian Jefferson, David Bowles dhe Eddie Mullan.
Pyetja
Paraqitni më thjesht shprehjet:
Zgjidhja
1. $$cos^2x \cdot cosx + sin^2x \cdot sinx = cos^3x + sin^3x$$
2. $$sin^3x \cdot cos^2x + sin^2x \cdot cos^3x = sin^2x \cdot cos^2x (sinx + cosx)$$
3. $$sin\frac{x}{2}cosx - cos\frac{x}{2}sinx = sin(\frac{x}{2} - x) = sin(-\frac{x}{2}) = -sin\frac{x}{2}$$
4. $$cosx \cdot cos3x - sinx \cdot sin3x = cos(x + 3x) = cos4x$$
5. $$(sinx + cosx)^2 + (sinx - cosx)^2 = sin^2x + 2sinxcosx + cos^2x + sin^2x - 2sinxcosx + cos^2x = 2(sin^2x + cos^2x) = 2$$
6. $$(sinx - cosx)^2 + sin2x = sin^2x - 2sinxcosx + cos^2x + sin2x = 1 - sin2x + sin2x = 1$$
7. $$(tgx + cotgx)(1 + cosx)(1 - cosx) = (tgx + cotgx)(1 - cos^2x) = (tgx + cotgx)sin^2x = (\frac{sinx}{cosx} + \frac{cosx}{sinx})sin^2x = (\frac{sin^2x + cos^2x}{sinxcosx})sin^2x = \frac{sin^2x}{sinxcosx} = \frac{sinx}{cosx} = tgx$$
8. $$\frac{1+sin2x}{(sinx+cosx)^2} = \frac{sin^2x + cos^2x + 2sinxcosx}{sin^2x + 2sinxcosx + cos^2x} = \frac{(sinx + cosx)^2}{(sinx + cosx)^2} = 1$$
9. $$\frac{tgx}{1-tg^2x} \cdot \frac{cotg^2x-1}{cotgx} = \frac{tgx}{1-tg^2x} \cdot \frac{\frac{1}{tg^2x}-1}{\frac{1}{tgx}} = \frac{tgx}{1-tg^2x} \cdot \frac{\frac{1-tg^2x}{tg^2x}}{\frac{1}{tgx}} = \frac{tgx}{1-tg^2x} \cdot \frac{1-tg^2x}{tg^2x} \cdot tgx = 1$$