Kopertina e librit Matematika 12 (me zgjedhje)

Zgjidhja e ushtrimit 1

Zgjidhja e ushtrimit 1 të mësimit 1D në librin Matematika 12 (me zgjedhje) nga shtëpia botuese Mediaprint me autorë Greg Attwood, Jack Barraclough, Ian Bettison, Keith Gallick, Daniel Goldberg, Anne McAteer, Alistair Macpherson, Bronwen Moran, Joe Petran, Keith Bledger, Cong San, Harry Smith, Geoff Staley dhe Dave Wilkins.


Pyetja

Paraqit këto thyesa me anë të thyesave elementare:

  1. 6x2(x2)(x+3)\dfrac{6x-2}{(x-2)(x+3)}
  2. 2x+11(x+1)(x+4)\dfrac{2x+11}{(x+1)(x+4)}
  3. 7x122x(x4)\dfrac{-7x-12}{2x(x-4)}
  4. 2x13(2x+1)(x3)\dfrac{2x-13}{(2x+1)(x-3)}
  5. 6x+6x29\dfrac{6x+6}{x^2-9}
  6. 73xx23x4\dfrac{7-3x}{x^2-3x-4}
  7. 8xx2+4x\dfrac{8-x}{x^2+4x}
  8. 2x14x2+2x15\dfrac{2x-14}{x^2+2x-15}

Zgjidhja

  1. 6x2(x2)(x+3)A(x2)+B(x+3)A(x+3)+B(x2)(x2)(x+3)6x2A(x+3)+B(x2)\dfrac{6x-2}{(x-2)(x+3)} \equiv \dfrac{A}{(x-2)} + \dfrac{B}{(x+3)} \equiv \dfrac{A(x+3)+B(x-2)}{(x-2)(x+3)} \rArr 6x-2 \equiv A(x+3)+B(x-2). Për x=2x = 2 kemi 6×22=A(2+3)+B(22)10=5AA=26 \times 2 - 2 = A(2+3) + B(2-2) \rArr 10=5A \rArr \boxed{A=2}. Për x=3x = -3 kemi 6×(3)2=A(3+3)+B(32)20=B×5B=46 \times (-3) - 2 = A(-3+3) + B(-3-2) \rArr -20=B \times -5 \rArr \boxed{B=4}. Kështu që 6x2(x2)(x+3)2(x2)+4(x+3)\dfrac{6x-2}{(x-2)(x+3)} \equiv \dfrac{2}{(x-2)} + \dfrac{4}{(x+3)}.
  2. 2x+11(x+1)(x+4)A(x+1)+B(x+4)A(x+4)+B(x+1)(x+1)(x+4)2x+11A(x+4)+B(x+1)2x+11Ax+4A+Bx+B2x+11(A+B)x+(4A+B)\dfrac{2x+11}{(x+1)(x+4)} \equiv \dfrac{A}{(x+1)} + \dfrac{B}{(x+4)} \equiv \dfrac{A(x+4)+B(x+1)}{(x+1)(x+4)} \rArr 2x+11 \equiv A(x+4)+B(x+1) \rArr 2x+11 \equiv Ax+4A+Bx+B \rArr 2x+11 \equiv (A+B)x + (4A+B). Barazojmë koeficientët e xx dhe kemi, 2=A+B2 = A+B. Barazojmë konstantet, 11=4A+B11=4A+B. Me sistem zgjidhim për AA dhe BB dhe kemi A=3\boxed{A=3} dhe B=1\boxed{B=-1}. Kështu që 2x+11(x+1)(x+4)3(x+1)1(x+4)\dfrac{2x+11}{(x+1)(x+4)} \equiv \dfrac{3}{(x+1)} - \dfrac{1}{(x+4)}.
  3. 7x122x(x4)A2x+B(x4)\dfrac{-7x-12}{2x(x-4)} \equiv \dfrac{A}{2x} + \dfrac{B}{(x-4)} \equiv A(x4)+B×2x2x(x4)7x12A(x4)+2Bx\dfrac{A(x-4)+B \times 2x}{2x(x-4)} \rArr -7x-12 \equiv A(x-4)+2Bx. Për x=4x=4 kemi 7×412=A(44)+2B×440=8BB=5-7 \times 4 -12 = A(4-4)+2B \times 4 \rArr -40=8B \rArr \boxed{B=-5}. Për x=0x = 0 kemi 7×012=A(04)+2B×012=4AA=3-7 \times 0 - 12 = A(0-4) + 2B \times 0 \rArr -12 = -4A \rArr \boxed{A=3}. Kështu që 7x122x(x4)32x5(x4)\dfrac{-7x-12}{2x(x-4)} \equiv \dfrac{3}{2x} - \dfrac{5}{(x-4)}.
  4. 2x13(2x+1)(x3)A(2x+1)+B(x3)A(x3)+B(2x+1)(2x+1)(x3)2x13A(x3)+B(2x+1)\dfrac{2x-13}{(2x+1)(x-3)} \equiv \dfrac{A}{(2x+1)} + \dfrac{B}{(x-3)} \equiv \dfrac{A(x-3)+B(2x+1)}{(2x+1)(x-3)} \rArr 2x-13 \equiv A(x-3) + B(2x+1). Për x=3x = 3 kemi 2×313=A(33)+B(2×3+1)7=B×7B=12 \times 3 - 13 = A(3-3)+B(2\times 3+1) \rArr -7 = B \times 7 \rArr \boxed{B = -1}. Për x=12x = -\dfrac{1}{2} kemi 2×(12)13=A(123)+B(2×(12)+1)14=A×312A=42 \times (-\dfrac{1}{2}) - 13 = A(-\dfrac{1}{2}-3) + B(2 \times (-\dfrac{1}{2})+1) \rArr -14 = A \times -3\dfrac{1}{2} \rArr \boxed{A=4}. Kështu që 2x13(2x+1)(x3)4(2x+1)1(x3)\dfrac{2x-13}{(2x+1)(x-3)} \equiv \dfrac{4}{(2x+1)} - \dfrac{1}{(x-3)}.
  5. Faktorizojmë emëruesin: 6x+6(x+3)(x3)\dfrac{6x+6}{(x+3)(x-3)}. Tani kemi 6x+6(x+3)(x3)A(x+3)+B(x3)A(x3)+B(x+3)(x+3)(x3)6x+6A(x3)+B(x+3)6x+6Ax3A+Bx+3B6x+6(A+B)x+(3B3A)\dfrac{6x+6}{(x+3)(x-3)} \equiv \dfrac{A}{(x+3)} + \dfrac{B}{(x-3)} \equiv \dfrac{A(x-3)+B(x+3)}{(x+3)(x-3)} \rArr 6x+6 \equiv A(x-3)+B(x+3) \rArr 6x+6 \equiv Ax-3A+Bx+3B \rArr 6x+6 \equiv (A+B)x + (3B-3A). Barazojmë koeficientët e xx dhe kemi, 6=A+B6=A+B. Barazojmë konstantet, 6=3B3A6 = 3B-3A. Me sistem zgjidhim për AA dhe BB dhe kemi A=2\boxed{A=2} dhe B=4\boxed{B=4}. Kështu që, 6x+6x292(x+3)+4(x3)\dfrac{6x+6}{x^2-9} \equiv \dfrac{2}{(x+3)} + \dfrac{4}{(x-3)}.
  6. Faktorizojmë emëruesin: 73x(x4)(x+1)\dfrac{7-3x}{(x-4)(x+1)}. Tani kemi 73x(x4)(x+1)A(x4)+B(x+1)A(x+1)+B(x4)(x4)(x+1)73xA(x+1)+B(x4)\dfrac{7-3x}{(x-4)(x+1)} \equiv \dfrac{A}{(x-4)} + \dfrac{B}{(x+1)} \equiv \dfrac{A(x+1)+B(x-4)}{(x-4)(x+1)} \rArr 7-3x \equiv A(x+1)+B(x-4). Për x=1x=-1 kemi 73×(1)=A(1+1)+B(14)10=B×5B=27 - 3 \times (-1) = A(-1+1) + B(-1-4) \rArr 10 = B \times -5 \rArr \boxed{B=-2}. Për x=4x = 4 kemi 73×4=A(4+1)+B(44)5=A×5A=17 - 3 \times 4 = A(4+1) + B(4-4) \rArr -5 = A \times 5 \rArr \boxed{A=-1}. Kështu që 73xx23x41(x4)2(x+1)\dfrac{7-3x}{x^2-3x-4} \equiv -\dfrac{1}{(x-4)} - \dfrac{2}{(x+1)}.
  7. Faktorizojmë emëruesin: 8xx(x+4)\dfrac{8-x}{x(x+4)}. Tani kemi 8xx(x+4)Ax+B(x+4)A(x+4)+Bxx(x+4)8xA(x+4)+Bx\dfrac{8-x}{x(x+4)} \equiv \dfrac{A}{x} + \dfrac{B}{(x+4)} \equiv \dfrac{A(x+4)+Bx}{x(x+4)} \rArr 8-x \equiv A(x+4) +Bx. Për x=0x=0 kemi 80=A(0+4)+B×08=4AA=28 - 0 = A(0+4)+B \times 0 \rArr 8 = 4A \rArr \boxed{A=2}. Për x=4x = -4 kemi 8(4)=A(4+4)+B×(4)12=4BB=38-(-4) = A(-4+4)+B \times (-4) \rArr 12 = -4B \rArr \boxed{B=-3}. Kështu që 8xx2+4x2x3(x+4)\dfrac{8-x}{x^2+4x} \equiv \dfrac{2}{x} - \dfrac{3}{(x+4)}.
  8. Faktorizojmë emëruesin: 2x14(x+5)(x3)\dfrac{2x-14}{(x+5)(x-3)}. Tani kemi 2x14(x+5)(x3)A(x+5)+B(x3)A(x3)+B(x+5)(x+5)(x3)2x14A(x3)+B(x+5)\dfrac{2x-14}{(x+5)(x-3)} \equiv \dfrac{A}{(x+5)} + \dfrac{B}{(x-3)} \equiv \dfrac{A(x-3)+B(x+5)}{(x+5)(x-3)} \rArr 2x-14 \equiv A(x-3)+B(x+5). Për x=3x=3 kemi 2×314=A(33)+B(3+5)8=B×8B=12 \times 3 - 14 = A(3-3) + B(3+5) \rArr -8 = B \times 8 \rArr \boxed{B=-1}. Për x=5x = -5 kemi 2×(5)14=A(53)+B(5+5)24=A×(8)A=32 \times (-5) - 14 = A(-5-3) + B(-5+5) \rArr -24 = A \times (-8) \rArr \boxed{A=3}. Kështu që 2x14x2+2x153(x+5)1(x3)\dfrac{2x-14}{x^2+2x-15} \equiv \dfrac{3}{(x+5)} - \dfrac{1}{(x-3)}.